Assessing Pretreatment Coatings 

The quality of pretreatment coatings can be assessed by visual observation of the conversion coating:

  • Is the coating uniform appearance and color? Many conversion coatings change the color of the metal substrate when the chemical process has been completed. If the color is inconsistent, streaked, spotted, etc., this can be an indication of a problem with the chemistry or delivery of the solutions. (Variations in color are acceptable in phosphate coatings on mixed metal sub-assemblies.)
  • Are there any bare areas, or areas that have too much or too little application?
  • Are there shiny spots? In phosphate coatings, shiny spots are indications of inhibition, a condition that exists when the phosphate coating could not form because of surface contamination.
  • Is there indication of mapping, that is, visible patterns in the coating? Mapping is caused by an uneven chemical reaction between the metal surface and the conversion coating. These can be caused by oily contaminants that react with the metal and form a permanent stain or bond on the metal surface; this is generally the result of an inadequate cleaning process. Mapping often shows up only after the final application of paint or other finish; this makes repairs very costly.
  • Is there any indication of “lace curtaining,” that is, streaking or other faint patterns? These can be caused by misaligned spray nozzles, drying positions, or air flow imbalances. Slight or occasional patterns are not normally a problem, but if they occur frequently, they are an indication of poor system design or poor operator handling.

For any types of substrate and treatment, the coating can be evaluated (within the specifications for each application) by assessing the coating weight, the crystal size or morphology (shape), and the chemical composition.

The coating weight is defined as the amount of coating deposited to a surface within a given area. This can be expressed as grams per square meter (g/sq m) or milligrams per square foot (mg/sq ft).

Pretreatment coating technologies are designed to apply specific conversion coatings in particular thicknesses (weights) on particular substrates; thus, measurement of the coating weight is a good means of testing how well the coating process is working, including its chemical balance. If the coating weight tests outside the specified range (either too much or too little), the process must be reviewed and corrected. NOTE: This test information is used primarily as an indicator of how well the cleaning and pretreatment process is working, but is not necessarily an indicator of the actual quality of the coating itself.

Many conversion coatings consist of a combination of crystalline and other microstructures that form when the pretreatment is deposited on, and chemically bonds with, the substrate. Though visual observation can detect many imperfections in the conversion coatings, only through microscopic examination can the size and shape of the crystal structure be examined and measured to see if it meets the relevant specifications. The findings are used to resolve chemistry or process errors. This microscopic analysis is generally performed at magnifications of 100 to 1,000 times; for newer coating technologies, higher magnifications up to 30,000 are necessary.

As the pretreatment process is essentially a chemical process, chemical analysis of the coating is a good means of determining if the process is producing the desired result. The analysis is generally done in a laboratory, either by simple analysis or by use of scanning electron microscopes. In the plant, the cleaning and treatment equipment can be equipped with monitors and alarms to alert operators when the solution is too weak or strong, when solution supplies have been exhausted, or when temperature are not within desired limits.

Ultimately, the performance of the paint or coating is the best indicator of the quality of the pretreatment. Does the paint or coating adhere evenly and smoothly? How does the paint or coating perform under adverse conditions, such as impact, pressure, humidity, corrosive elements?

WATER QUALITY

The quality of the water used in cleaning and pretreatment is an essential factor in the quality of the final product. In most aqueous cleaning operations, the chemical baths and solutions are 95%-97% water, and the rinses are usually 100% water. Rinse stages serve to neutralize and dilute, and most importantly, to prevent or minimize contamination between treatment stages.

Depending on the chemistry required for a particular cleaning and treatment process, and the quality and relative hardness of the local water supply, the use of untreated tap water may or may not be appropriate. Impurities in the water can make cleaning solutions and rinses less effective and can affect the quality of the finish coats.

Variations in water chemistry can cause chemical reactions in the cleaning solutions that could damage equipment and products and affect the quality of the finish coats. High levels of salts in hard water can precipitate on some treated surfaces, causing corrosion and blistering in humid environments.

The best water for metal cleaning and treatment processes is very soft water (calcium carbonate not to exceed 200 ppm) with dissolved solids not exceeding 150 ppm, chlorides at or below 15 ppm, and sulfates at or below 25 ppm. It may be necessary to treat tap water before it can be used in the cleaning and pretreatment system, or to use deionized water for final rinses if the incoming water cannot be treated to meet standards.

RECHARGING THE SYSTEM

At some point, regardless of the volume of the operation, the quality of housekeeping practices, and the presence of recycling and recovery programs, the cleaning and treatment system will need to be recharged; that is, it will need to be drained, cleaned, and replenished with fresh fluids.

Work with your supplier to understand how to monitor the chemical health of your system and to know when to re-charge. Monitoring will involve measuring and recording pH, volumes of emulsified oils, etc.

TROUBLESHOOTING

If the quality of the cleaning or conversion coat is not acceptable:

  • Check water quality throughout the system.
  • Check spray nozzles and other inflow devices to ensure free flow of water and solutions
  • Check positioning of racks, baskets, etc., to ensure that maximum impingement (exposure) is achieved.
  • Check timing of every stage to allow chemicals time to work.
  • Check the chemistry, concentrations, and temperatures of all solutions.
  • Clean filters, screens, etc., as often as needed to keep them clear and free-flowing.
  • De-scale boilers, washers, and other equipment as often as needed to keep them scale-free.

PLANNING FOR QUALITY

Aqueous cleaning and treatment systems are highly sophisticated chemical operations, subject to error and variation related to water quality, operator judgement, and contamination inherent to the process. Frequent quality checks are essential and are normally carried out on every shift, checking for temperature, pressure, pH, and concentration.

Return to Metal Cleaning and Surface Pretreatment Process.
Return to FAQ’s.

Consider arranging with your supplier for regular audits of the Assessing pretreatment coatings and cleaning and treatment operation to ensure that it is serving your needs. Some high-volume operations undergo audits as frequently as every few weeks.